3.190 \(\int \frac{\cos ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=75 \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a^2 f \sqrt{a+b}}+\frac{x (a-2 b)}{2 a^2}+\frac{\sin (e+f x) \cos (e+f x)}{2 a f} \]

[Out]

((a - 2*b)*x)/(2*a^2) + (b^(3/2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a^2*Sqrt[a + b]*f) + (Cos[e + f*
x]*Sin[e + f*x])/(2*a*f)

________________________________________________________________________________________

Rubi [A]  time = 0.103376, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {4146, 414, 522, 203, 205} \[ \frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a^2 f \sqrt{a+b}}+\frac{x (a-2 b)}{2 a^2}+\frac{\sin (e+f x) \cos (e+f x)}{2 a f} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

((a - 2*b)*x)/(2*a^2) + (b^(3/2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(a^2*Sqrt[a + b]*f) + (Cos[e + f*
x]*Sin[e + f*x])/(2*a*f)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
 n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x)}{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right )^2 \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{2 a f}-\frac{\operatorname{Subst}\left (\int \frac{-a+b-b x^2}{\left (1+x^2\right ) \left (a+b+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{2 a f}\\ &=\frac{\cos (e+f x) \sin (e+f x)}{2 a f}+\frac{(a-2 b) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{2 a^2 f}+\frac{b^2 \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{a^2 f}\\ &=\frac{(a-2 b) x}{2 a^2}+\frac{b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{a^2 \sqrt{a+b} f}+\frac{\cos (e+f x) \sin (e+f x)}{2 a f}\\ \end{align*}

Mathematica [A]  time = 0.252891, size = 67, normalized size = 0.89 \[ \frac{\frac{4 b^{3/2} \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{\sqrt{a+b}}+2 (a-2 b) (e+f x)+a \sin (2 (e+f x))}{4 a^2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/(a + b*Sec[e + f*x]^2),x]

[Out]

(2*(a - 2*b)*(e + f*x) + (4*b^(3/2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/Sqrt[a + b] + a*Sin[2*(e + f*x
)])/(4*a^2*f)

________________________________________________________________________________________

Maple [A]  time = 0.101, size = 92, normalized size = 1.2 \begin{align*}{\frac{\tan \left ( fx+e \right ) }{2\,fa \left ( \left ( \tan \left ( fx+e \right ) \right ) ^{2}+1 \right ) }}+{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{2\,fa}}-{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) b}{f{a}^{2}}}+{\frac{{b}^{2}}{f{a}^{2}}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+b*sec(f*x+e)^2),x)

[Out]

1/2/f/a*tan(f*x+e)/(tan(f*x+e)^2+1)+1/2/f/a*arctan(tan(f*x+e))-1/f/a^2*arctan(tan(f*x+e))*b+1/f*b^2/a^2/((a+b)
*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 0.566991, size = 663, normalized size = 8.84 \begin{align*} \left [\frac{2 \,{\left (a - 2 \, b\right )} f x + 2 \, a \cos \left (f x + e\right ) \sin \left (f x + e\right ) + b \sqrt{-\frac{b}{a + b}} \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \,{\left ({\left (a^{2} + 3 \, a b + 2 \, b^{2}\right )} \cos \left (f x + e\right )^{3} -{\left (a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt{-\frac{b}{a + b}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right )}{4 \, a^{2} f}, \frac{{\left (a - 2 \, b\right )} f x + a \cos \left (f x + e\right ) \sin \left (f x + e\right ) - b \sqrt{\frac{b}{a + b}} \arctan \left (\frac{{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b\right )} \sqrt{\frac{b}{a + b}}}{2 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{2 \, a^{2} f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

[1/4*(2*(a - 2*b)*f*x + 2*a*cos(f*x + e)*sin(f*x + e) + b*sqrt(-b/(a + b))*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x
+ e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x + e)^2 - 4*((a^2 + 3*a*b + 2*b^2)*cos(f*x + e)^3 - (a*b + b^2)*cos(f*x + e)
)*sqrt(-b/(a + b))*sin(f*x + e) + b^2)/(a^2*cos(f*x + e)^4 + 2*a*b*cos(f*x + e)^2 + b^2)))/(a^2*f), 1/2*((a -
2*b)*f*x + a*cos(f*x + e)*sin(f*x + e) - b*sqrt(b/(a + b))*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)*sqrt(b/(a
 + b))/(b*cos(f*x + e)*sin(f*x + e))))/(a^2*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{2}{\left (e + f x \right )}}{a + b \sec ^{2}{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+b*sec(f*x+e)**2),x)

[Out]

Integral(cos(e + f*x)**2/(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.35891, size = 134, normalized size = 1.79 \begin{align*} \frac{\frac{2 \,{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )} b^{2}}{\sqrt{a b + b^{2}} a^{2}} + \frac{{\left (f x + e\right )}{\left (a - 2 \, b\right )}}{a^{2}} + \frac{\tan \left (f x + e\right )}{{\left (\tan \left (f x + e\right )^{2} + 1\right )} a}}{2 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

1/2*(2*(pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*b^2/(sqrt(a*b + b^2)*a^2
) + (f*x + e)*(a - 2*b)/a^2 + tan(f*x + e)/((tan(f*x + e)^2 + 1)*a))/f